Asymptotic Efficiency of Estimates for Models with Incidental Nuisance Parameters

نویسنده

  • Helmut Strasser
چکیده

In this paper we show that the well–known asymptotic efficiency bounds for full mixture models remain valid if individual sequences of nuisance parameters are considered. This is made precise both for some classes of random (i.i.d.) and non–random nuisance parameters. For the random case it is shown that superefficiency of the kind given by an example of Pfanzagl, [7], can happen only with low probability. The non-random case deals with permutation invariant estimators under one–dimensional nuisance parameters. It is shown that the efficiency bounds remain valid for individual non–random arrays of nuisance parameters whose empirical process, if it is centered around its limit and standardized, satisfies a compactness condition. The compactness condition is satisfied in the random case with high probability. The results make use of basic LAN-theory. Regularity conditions are stated in terms of L–differentiability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Perturbation Invariant Estimates and Incidental Nuisance Parameters

It is shown (Proposition (3.9)) that the asymptotic information bound which is valid for the estimation of a parameter in the structure (mixture) model remains valid in the functional model (incidental nuisance parameters) if only perturbation symmetric estimators (Deenition (3.6)) are admitted. Perturbation symmetry is a property which is closely related to permutation symmetry (Theorem (3.4))...

متن کامل

On the correction of the asymptotic distribution of the likelihood ratio statistic if nuisance parameters are estimated based on an external source.

In practice, nuisance parameters in statistical models are often replaced by estimates based on an external source, for instance if estimates were published before or a second dataset is available. Next these estimates are assumed to be known when the parameter of interest is estimated, a hypothesis is tested or confidence intervals are constructed. By this assumption, the level of the test is,...

متن کامل

Location Reparameterization and Default Priors for Statistical Analysis

This paper develops default priors for Bayesian analysis that reproduce familiar frequentist and Bayesian analyses for models that are exponential or location. For the vector parameter case there is an information adjustment that avoids the Bayesian marginalization paradoxes and properly targets the prior on the parameter of interest thus adjusting for any complicating nonlinearity the details ...

متن کامل

A Sieve M-theorem for Bundled Parameters in Semiparametric Models, with Application to the Efficient Estimation in a Linear Model for Censored Data.

In many semiparametric models that are parameterized by two types of parameters - a Euclidean parameter of interest and an infinite-dimensional nuisance parameter, the two parameters are bundled together, i.e., the nuisance parameter is an unknown function that contains the parameter of interest as part of its argument. For example, in a linear regression model for censored survival data, the u...

متن کامل

A Sieve M-theorem for Bundled Parameters in Semiparametric Models, with Application to the Efficient Estimation in a Linear Model for Censored Data By

In many semiparametric models that are parameterized by two types of parameters—a Euclidean parameter of interest and an infinite-dimensional nuisance parameter—the two parameters are bundled together, that is, the nuisance parameter is an unknown function that contains the parameter of interest as part of its argument. For example, in a linear regression model for censored survival data, the u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004